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Two-electron, four-center Coulomb integrals are undoubtedly the most difficult
type involved in ab initio and density functional theory molecular structure cal-
culations. Millions of such integrals are required for molecules of interest; there-
fore rapidity is the primordial criterion when the precision has been reached. This
work presents an extremely efficient approach for improving convergence of semi-
infinite very oscillatory integrals, based on the nonlinear D-transformation and some
useful properties of spherical Bessel, reduced Bessel, and sine functions. The new
method is now shown to be applicable to evaluating the two-electron, four-center
Coulomb integrals over B functions. The section with numerical results illustrates
the unprecedented efficiency of the new approach in evaluating the integrals of
interest.  (© 2002 Elsevier Science (USA)

Key Words: nonlinear transformations; semi-infinite integrals, molecular multi-
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1. INTRODUCTION

Coulomb integrals are present in all accurate molecular, electronic structure calculation
techniques. At the ab initio level, the two-€lectron two-, three-, and four-center Coulomb
integrals havelong been the source of bottlenecks. In density functional theory, we also need
the two-€electron, two-center Coulomb integrals and a three-center term from the potential.

The ab initio calculations are usually carried out using the LCAO-MO approach, where
molecul ar orbital sarebuilt from alinear combination of atomic orbitals[ 1]. Thechoiceof the
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basis set of atomic orbitalsis of utmost importance in this approach. A good atomic orbital
basis should satisfy two conditions for analytical solutions of the appropriate Schrodinger
equation, namely the exponential decay at infinity [2] and the cusp at the origin [3].

A good basis set for molecular orbitals should also satisfy two pragmatic requirements:

1. Already short expansions of the atomic orbitalsin terms of the basis functions should
provide sufficiently accurate results.
2. The molecular multicenter integrals should be computed efficiently.

The Gaussian-type functions (GTFs) [4-6] are the most popular functions used in
ab initio calculations. This is due to the fact that with GTFs the numerous molecular
integrals can be evaluated rather easily. Unfortunately, these Gaussian basis functions fail
to satisfy the af orementioned mathematical conditions satisfied by exact eigenfunctions of
atomic and molecular Schrodinger equations.

The exponential-type functions (ETFs) are better suited than GTFs to represent electron
wave functions near the nucleus and at long range [7]; this implies that a smaller number
of ETFsthan of GTFsis needed for comparable accuracy. This good convergence of ETFs
can be explained by the fact that they show the same asymptotic behavior as exact solutions
of atomic and molecular Schrodinger equations.

Among the ETFs, Slater-type functions (STFs) [8, 9] are certainly the simplest analytical
functions. Hence, they have a dominating position in atomic electronic structure calcula-
tions. However, the use of STFsin molecular calculations has been prevented by the fact
that their multicenter integrals are extremely difficult to evaluate for polyatomic molecules,
particularly bielectronic terms.

Although B functions[10-12] are more complicated than STFs, they have some remark-
able mathematical properties applicable to multicenter integral problems. They possess a
relatively simple additiontheorem[11, 13-15] and extremely compact convol utionintegrals
[13, 16], and their Fourier transform is of exceptional simplicity [14, 17]. Note that STFs
can be expressed as alinear combination of B functions[12, 13].

The B functions are well adapted to the Fourier-transform method [18-20], which isone
of the most successful approaches to the evaluation of multicenter integrals. This method
allowed integral representations in terms of nonphysical variables for the molecular mul-
ticenter integrals over B functions to be developed [19, 20]. The numerical evaluation of
these integral representations in terms of nonphysical variables presents severe computa-
tional difficulties due to the presence of semi-infinite very oscillatory integrals.

Theuse of Gauss-Laguerrequadratureisinefficient for evaluating these kindsof integrals
as we showed in [21-23]. These semi-infinite integrals can be transformed into infinite
series. These series are convergent and alternating; thus the sum of thefirst N terms, for N
sufficiently large, gives a good approximation of the corresponding semi-infinite integral .
Unfortunately, thecal culationtimesare prohibitive. Although weaccel eratethe convergence
of the infinite series by using the epsilon algorithm of Wynn [24] or Levin's u transform
[25], the calculation times are still prohibitive for good accuracy.

In [21-23], we showed the efficiency of the nonlinear D-transformation due to Sidi
[26, 28] and Levin and Sidi [27] for improving convergence of these kinds of semi-infinite
oscillatory integrals. To apply the D-transformation, the integrand is required to satisfy
a linear differential equation of order m with coefficients having asymptotic expansions
in inverse powers of their arguments. The approximation 5,({“), which as n becomes large
convergesvery quickly to the exact value of the semi-infiniteintegral, isobtained by solving
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alinear set of equations of order n(m — 1) 4+ 1 and where it is necessary to calculate the
(m — 1) successive derivatives of theintegrandsand itsn(m — 1) successive zeros[ 26, 28].
Inthecase of thetwo-€electron, four-center Coulomb integrals, theintegrand satisfiesasixth-
order differential equation of the form required to apply the D-transformation [21]. This
makes the application of the D-transformation very difficult, especially when the values of
the quantum numbers are large.

Previous work [22, 29] focused on the use of some properties of the reduced Bessel and
spherical Bessel functionsto reduce the order of the differential equation required to apply
the D-transformation to 2, keeping al the other conditions fulfilled. This led to the H D
method, which greatly simplified the application of the D-transformation. The calculation
of the successive derivatives of integrands is avoided and the order of the linear set of
equations to solve is reduced to n + 1. The computation of the n + 1 successive zeros of
the spherical Bessel function and its first derivative is necessary for the calculations.

The purpose of the present work isto further simplify the application of the above non-
linear transformations and to further reduce the calculation times keeping the same high
accuracy. This is made possible by the help of some useful properties of sine, spherical
Bessel, and reduced Bessel functions and the use of Cramer’s rule for calculating approx-
imations of semi-infinite highly oscillatory integrals. The computation of the successive
zeros of the integrand is avoided.

The numerical results section shows the unprecedented efficiency of the new approach
in evaluating the two-electron, four-center. Coulomb integral over B functions.

2. DEFINITIONSAND BASIC FORMULAE

The two-€electron, four-center Coulomb integral over B functionsis defined by

Joglame lama A§[8$%|1<;1, R— OA)"[B. (¢ R — 0C)]"

—

(¢, R— OB)B™, (z, R —OD)dRdR, (1)

1
X m nz |2 Ny, |4
where A, B, C, and D are four arbitrary points of the Euclidean space &3, while O isthe
origin of the fixed coordinate system.

The B function is defined as[11, 12]
@r)

Bm|(fvf)_m n__(fr)Y|m(9r7(Pr) (2
where n, |, m are the quantum numbers suchthatn=1,2,...,1=0,1,...,n—1, and
m=—Il,—-1+1,...,1 — 1,1 andwhereY™ (9, ¢) standsfor the surface spherical harmonic

and is defined by [30]

2+ D = ImphH
4z (I + ImDh

Y. )= m*”‘[ } R (cosf)e™. 3)

P™(x) isthe associated L egendre polynomial of |th degree and mth order:

d [+m 2 _ 1l
PT(x) = (1 - Xz)m/2<&) {%] (4)
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The reduced Bessel function Rn+% (2) for n € Ng is defined by [10, 11]

n+2 — —Z (n+J)I 1
n+1(2) \/7(2) Kni1(2) = 2" Z iln— ! 221" ®)

where K, +1 stands for the modified Bessel function of the second kind [31].
Reduced Bessel functions satisfy the recurrence relation [10]

k, 11 =(@2n— 1)“kn,% (2) + zz“kn,g(z). (6)

A useful property satisfied by k1 (2) is given by [31]

d \"[kns1@ d \" /7 Kn:@ Ko @
<zdz> lzz”” 1 :<zdz> {\fz 21t} ]_( Um0

The Slater-typefunction isdefined in normalized form according to therelationship [8, 9]

XM (@€, 7 = N0, Orte " Y @r, ¢r), €)

where N(n, ¢) = ¢~™1[(2¢)2"1/(2n)!]? stands for the normalization factor.
The Slater-type function can be expressed as afinite linear combination of B functions
[12]

n—| n—l— |
. -1 P(n —H12+P( !
R e e

- £~ (2p—n-Di@2n -2 - 2p)!! B (&1, ©)
where
=0 e @
and where the double factorial is defined by
2N =2x4x6x---x (2k) = 2k!
(2k+1)!!:1X3x5x-~-x(2k+l):% (11)

on =1

The Fourier transform BmI (¢, p) of BT (¢, 1) isgiven by [14, 17]

/ e 'PTBM (¢, ) dr (12)
r

— . 1
Bni(¢, p) = W

2 o (—ilpl)'
= \/;52 - 1W (05, p)- (13)
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The Rayleigh expansion of the plane wave functionsis given by [32]
o +oo |
P =">" Ax (D) [ BIFDY"6r, ¢r) Y05, 0p)] (14)

1=0 m—-1

The spherical Bessel function j (x) of order | € N isdefined by [31, 33]

. d d i
1.<x>=(—1>'x'<xdx> J000) = (— 1)'x'< dx) (S”)fx)>, (15)

where ji (x) and itsfirst derivative j/(x) satisfy the recurrence relations [33]

Xji—1(X) + Xji12(X) = (2 + D) ji(x) (16)

200 =+ D ji+a(x) = (2 + D j{(%).
In the following, we denote the successive zeros of j; (x) by jl ! withn=1,2,.... j&l
2

is assumed to be 0.
The Gaunt coefficients are defined as [34—40]

(lmyllsmallamg) = / / Y™ 0. )] “Y™(0. Y™ 0. ) sSn dodg.  (17)
0=0 J p=|

These coefficients linearize the product of two spherical harmonics,

l1+2
(Y0, )] Y20, 9) = Z (Ilamaflymy[Imy — my) Y™™ (6, @), (18)
I=Imin‘2
where the subscript | = Iin, 2 in the summation symbol implies that the summation index

| runsin steps of 2 from I, tol; + 12 and the constant |, is given by [37]

. max(|ly —1zl, [mz —my|), if [1 412+ max (|l — Iz, [mz —my|) iseven (19)
™ max(lly—lal, Imp—my ) 4+ 1, if I3 +124 max(lly —I2], [mz—my|) isodd.
1 1 efila(r'fF-{l) R
—_— —dk. 20
I — Ryl 2n2/ k? 29

3. TWO-ELECTRON, FOUR-CENTER COULOMB INTEGRALSOVER B FUNCTIONS

By substituting theintegral representation of the Coulomb operator (20) in the expression
of the two-electron, four-center Coulomb integrals (1), we obtain

jnzlzmz,n4l4m4 _ 1 eiX~R41 —iXr B =2 ﬁ
nlllml.n3l3m3 - ﬁ X2 < Ny, |1(§1’ r )|e | Ny, |2(§27 r— 21)>F

x (B, (¢4, 7)€ |BI, (3, T — Ra)) dX, (21)
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where ﬁl =0A, ﬁz =0B, ﬁg =0C, §4 =OD,F= ﬁ— ﬁl,Fz ﬁ/ — ﬁ4, and ﬁij =
R —R.

The Fourier-transform method allowed analytical expressions to be developed for the
terms[19, 20]

(B (. D)e ™ BY, (6.7 — R)):.

Thisgreat result led to analytical expressionsfor one- and two-€el ectron multicenter integrals
over B functions. Inthe case of two-electron, four-center Coulombintegrals, thisexpression
isgiven by [20]

l1 4 np + 1o + 1!
e g4,05(21, 4 1112l i Lot
Indimndsmy = ST DR+ D e+ 1!

(N3 +13+nz 414+ 1)! g2H— 2t
(N3 +13)!(Ng +14)!

x (=) 225 + D112, + DN

i p2 7 |’ /
e 2ngtHa—1 2n4+l4 1 1] (lamy[lymy [l —15my — mj)
3 E E

@1+ D201 — 19 + 1M

17=0m)=p1

2 w2

(loma|lom5 |l — 15mp — M)
lo+1) 1A (lama|lom; 2 2
DIDIRL L @5+ D205 — 1) + 4!

1,=0 m,=pxn
| /
% i fz: 154y (13Mallzm|ls — 13mg — mg)
— @+ DiR0s—15) + 1Y
=

la  pa

ot iy (lamallzmyls — Iymg — my)
XY e = T + 111

1,=0 m}=pa
11415 : !
I 11 ’ / | \yM—M
Y (pmollimy M2 — M) Ry Y (05, 9g,,)
I=l1 min,2
|17|/1+|27|é
/ / ! /
X E (I2 = I5my — M1y — 15my — mi[l1omyy)
l2=1] -2
13+,
Lo 11 ey 11 |’ —m.
X E (I3m |l smg|1'my, — m3)R34Y|/ * (0o Pio)
I'=l2 min,2
|37|/3+|47|A
/ / ’ /
X E <I4—I4m4—m4|I3—I3m3—m3|I34m43)
|34:|£m'n’2

l12+H34

x> (=) {(li2Maa |l 3amag|Ape)

A=l 2

Alp Alzg i i
Al [(Alsg (—=1)hetls
X Z Z < le )( >2v1+vZ+|+| +1(V1+ +|) (V2+ _|_|)

j12—0 jaa=0
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Y. (65, @5)

1 Sn2+|2+|1(1 _ S)n1+|1+|2 1 tn4+|4+|3(1 _ t)n3+|3+|4
X 7 7 7 7
/s—o si(1—9)- /t:o th(1 -tk
+o0 Ky, [Re1 y12(S, X)] Ko, [ Raa yaa(t, X)]
X X" - .
Xx=0 [yia(s, x)]"2 [yaa(t, X)]"r=e

ja(ux)dx| dtds (22)

p— (Mg — My) — (Mg — M) + (Mg — M) — (M3 — M)
Ny, =21+l +na+12) =11 +1) =141

Ny =23+ 13+ ng+1g) —(5+1) —1"+1

pai = max(—l,m — I +1)), fori =1234

pai = min(li, m +1; —17), fori =1,234

[y12(5, )]? = (1 — 8)¢2 4 522 + (1 — 9)X?

[yaa(t, )12 = (1 — )2 + te2 + t(1 — t)x?

nx=|1—|:/|_+|2—|/2+|3—|é+|4—|£1

. 1
vi=ni+no+1li+1—1 —J12+§
’ H 1
vo—Ng+ng+l3+14—1 —134+§

7 =(1-9Ry+(1—t)Rys — Ryy

1415 — | 15415 — 1/

1127 Ay =T AT
2 i 2

mij =m —m — (mj —m)).

A"]_z =

Theprincipal difficultiesin the numerical evaluation of the above expression arise mainly
from the presence of the semi-infinite integral, which will be referred to as J (s, ), whose
integrand, which will be referred to as F 7 (x), oscillates rapidly due to the presence of the
spherical Bessal function j; (vx) in particular for large values of v and A. Note that in the
regionswheres andt are closeto 0 or 1, the oscillations become very rapid. Indeed, when
we make the substitutionss = 0 or 1 and t = 0 or 1, the integrand will be reduced to the
term x™ j; (vXx), because the terms

r(vl[ R21 J/12 (Sv X)]
[y12(8, X)]"™2

and
sz[ R34 )/34(t7 X)]
[yaa(t, x)] "

which are exponentially decreasing, become constants and therefore the rapid oscillations
of j; (vx) cannot be damped and suppressed by the exponential decreasing functions k,. It
should be mentioned that the regions where s and t are close to O or 1 carry avery small
weight dueto factors s'2(1 — s)', t'4(1 — t)'s in the integrands (22) [42—45].
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Let us consider the semi-infinite integral 7 (s, t). It is given by

+00
Fs ) _/ M kvl[R21 ¥12(S, X)] K, [ Raa y34(t, X)] i; (%) dx 23)

[y12(s, X)] "2 [y3a(t, X)] e

n+1

B Z/'“ kul[RZI y12(S, X)] K, [ Raa yaa(t, X)]
[yia(s, X)]™2  [ysa(t, X)]™s

jhx)dx,  (24)

where j;' = ]k 1/v n=1,2, ..., which are the successive zeros of j,(vx). j?, is
assumed to be 0.

The above infinite series is convergent and alternating therefore the sum of the first N
terms, for N sufficiently large, gives a good approximation of the semi-infinite integral,
but the use of this approach has been prevented by the fact that the calculation times for
a sufficient accuracy are prohibitive. We have shown [21, 22] that the use of the Gauss-
Laguerre quadrature for evaluating these kinds of integrals gives inaccurate results in the
regions where s and t are close to 0 or 1 since the integrand cannot be represented by a
function of the form g(x)e=** where g(x) is not arapidly oscillating function. The use of
the epsilon algorithm of Wynn [24] or Levin'su transform [25] accel erates the convergence
of theinfinite series but the calculation times are till prohibitive [21, 22].

4. THE D AND HD METHODS FOR ACCEL ERATING CONVERGENCE
OF SEMI-INFINITE OSCILLATORY INTEGRALS

For the following, we define A”) for a certain y as the set of infinitely differentiable
functions p(x), which have asymptotic expansionsin inverse powers of X asx — +oo, of
theform

~ XY a2,
p(X) ~ X <ao+x+xz+ (25)

and their derivatives of any order have asymptotic expansions, which can be obtained by
differentiating that in (25) term by term.

From (25) it follows that A”) > A= 5 ...

We denote A®) for some y, the set of functions p(x) such that p(x) € A® and
liMy_ 100 X7 P(X) # 0. Thus, p € A”) has an asymptotic expansion in inverse powers
of x asx — o0 of the form given by (25) with ay # 0.

We defined the functional ao(p) by ao(p) = 8 = limy_, 100 X7V P(X).

We defined eA” for somek asthe set of g(x) = €#™® where ¢ (x) € AX.

THEOREM 1[26]. Let f(x) beintegrableon [0, +o¢] (i.e, f0+°° f (t) dt exists) and let
it satisfy a linear differential equation of order m of the form

m
FO0=> me0f®00, pce AW, ik <k (26)
k—1

If for everyinteger | > —1,

Zm — D —k+Dpeo#1,
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where
= i —k
Pco= _lim x“p(x), 1<k=<m,
: X——+00
andfori <k <m, 1<i<m, lim, p l)(x)f““‘)(x) = 0, then the approximation

D““) of f f (t) dt, usingthenonlinear D-transformation, satisfiesthen(m — 1) + 1 equa-
tions given by [26]

% m-1 n-1 >
~(m) _ (k) o P _
k=1 i=0
where x,| =0, 1, ... are the successive zeros of f(x).ox fork=1,...,m— 1, arethe

minimaof k + 1ands,, wheres, isthelargest of theintegerss for which limy_, ; o, x5 f ®(x)
=0.
D™ andBy;ifork=1,....m—1, i =0,1,...,n—21arethen(m— 1)+ 1 unknowns.

In previous work [21], we showed that the integrand F7(x) of J (s, 1) satisfies a sixth-
order, linear differential equation with coefficients having asymptotic expansion in inverse
powersof their argument x asx — oo and all the.conditionsto apply the D-transformation
are fulfilled.

Theresultsobtai ned by applying thistransformation werevery satisfactory. Unfortunately
thecomputation of thefifth successive derivativesof theintegrand andits5n successivezeros
is necessary for the calculations as can be seen from (27). This presents severe numerical
and computational difficultiesin particular when the values of the quantum numbersn;, I;,
and m; are large. The order of the linear set of equations to solve for calculating the
approximations D™ is equal to 5n + 1; thus when the value of n islarge, the calculations
become very difficult.

In [23, 29], we showed by using some helpful properties of spherical Bessel, reduced
Bessel, and Poincaré series [46] that we can obtain a second-order, linear differential
equation of the form required to apply the D-transformation for a function f(x) of the
form f (x) = g(x)j.(x), where j, (x) stands for the spherical Bessel function and g(x) =
h(x)e?™®, and where h(x) € A% for some y and ¢ (x) € A® for k > 0 and a(¢p) < O.
The reduction of the order of the linear differential equation to 2 led to the H D method
that greatly simplified the application of the D-transformation. The approximation H 55?
of [J7° f(t)dt isgiven by [23, 29]

— X 12
HD<n2>=/O f () dt 4+ g(x) j; (x)%? Zﬂx— =0,1,...,n, (28)
i=0
where x; = ]|+l for | =0,1,..., which are the successive zeros of j,(x). H 5#? and
ﬂl., i =0, 1 ,n—1 arethe (n + 1) unknowns of the above linear system.

Itisshown that that theintegrand F 7 (x) of J (s, t) satisfiesall the conditionsfor applying
the HD method [22, 29], and consequently a good approximation of the semi-infinite
integral J (s, t) can be obtained by solving the linear system (28).

As can be seen from (28), calculation of the successive derivatives is avoided, and we
only need to calculate thefirst derivative of the spherical Bessel function j; (x). The order
of the linear system to solve using the H D method is reduced to n + 1. This leads to a
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substantial reduction in the calculation times for high predetermined accuracy, but it is still
necessary to compute the n successive zeros of j; (X) and to solve the linear system (28).

The purpose of this work is to further simplify the application of the above nonlinear
transformations to eval uating the two-el ectron, four-center Coulomb integral and to further
reduce the cal culation times, keeping the same high predetermined accuracy.

5. THE SD APPROACH TO EVALUATING SEMI-INFINITE HIGHLY OSCILLATORY
INTEGRALSAND APPLICATION

LEMMA 1. Let p(x) bein A®) for some y. Then

1. If y # 0, then p'(x) € A”~D; otherwise p'(x) € A2,

2. Ifq(x) € A®, then p(x)q(x) € A+ and ao(pa) = ao( Peto(Q).-

3. Vk € IR, x¥p(x) € A%t and ap(x¥ p) = ao(p).

4. Thefunction cp(x) € AY) and ap(cp) = Cag(p) for all ¢ = 0.

5. 1fq(x) € A® andy — § > 0, thenthefunction p(x) + q(x) € A anda(p + q) =
ao(p). If y = 8 and ao(p) # —ao(q), then the function p(x) + q(x) € A® and ao(p +
Q) = ao(p) + ao(d). N

6. For m > O aninteger, p™(x) € A™" and ag(p™) = ao(p)™.

7. Thefunction 1/p(x) € A" and ag(1/p) = 1/ao(p).

The proof of Lemma 1 follows from the properties of Poincaré series [46].

LEMMA 2. Let ¢ € A% wherek isa positive integer and k = 0. The function
Kny1(@(x)) € AMOA"
and can be written in the following form:
Koy 1 ($00) = dr00e™™,

where ¢, € A" and ag(¢1) = (ao()" # O.

By using the analytical expression of the reduced Bessel function which is given by
Eq. (5) and using some properties of Poincaré series, one can easily demonstrate the valid-
ity of Lemma 2.

THEOREM 2. Let f(x) be a function of the form f (x) — g(x) j,(X), where g(x) isin
C?([0, 4+o00]) which is the space of functions that are twice continuously differentiable on
[0, +0¢], and of the form g(x) = h(x)e?™® and where h(x) € A”) and ¢(x) € A® for
some y and k. If k > 0, ao(p) <Oandforall | =0,...,4 — 1, lim oxX' 1[5
(X*1g(X))]jr_1-1(X) = 0, then f(x) isintegrable on [0, +-00] (i.e, f0+°° f(t) dt exists)
and an approximation of foﬂo f (x) dx isgiven by

pei — im0 (T 00/T 41+ DUF )/ X B0
n n+1 /n+1 . ‘\n 2 o
i=0 ( i )(XO/“ +i+)) /[Xi+jG(X|+J)]

: (29)

where = (1 + DL for  =0,1,...,G(X) = (%)’\(xk‘lg(x)) and where F(x) —
Jo G sin(t) dt.
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Proof. Let us consider [;" f(x)dx = [, g(x)j;(x). By replacing the spherical
Bessel function j; (x) with its analytical expression given by (15), we obtain

+00 N +00 N d *.
/O f(x)dx:(—l)/O Xg(X)|:<XdX> jo(x)}dx. (30)

By integrating by parts until all the derivatives of jo(x) with respect to x dx disappear in
the last term on the right-hand side of (30), one can obtain

+00 d 1 d A—1-1
— A A— Y .
/0 f o0 dx = (—1) [Z( 1 (( )(x g(x)))((xdx) Jo(X)>L
+00 d
+/0 de ) (X 1g(X))} jo(x) x dx. (31)
Using Eq. (15) and replacing jo(x) by S”(X) , the above equation can be rewritten as
e l—A+1 A—1
f(x)dx = —
/0 (x) dx le (( )(x g(x)))n - .(x)]0

+00 d 1
+/0 dex) (X g(x))}sm(x)dx (32

where g(x) is exponentialy decreasing as X — +oo. From this it follows that
(de) (x*71g(x)) is aso exponentially decreasing as x — 4o0o and consequently
limyos oo X' (50 471G (0)] 11 () = Ofor al | = 0.

+00

+00

Aslimeo X 4190 (X 1g(X)) ja—11(X) = Ofor| = 0,..., A — 1, the above equa-
tion can be rewritten as
+o00 400 d
/ f(x)dx = / K > (X"~ 1g(x))} sin(x) dx. (33)
0 0 X dx

Let us consider the function G(x) = (de) (x*~1g(x)). By using the Leibnitz formulae
and the fact that g(x) = h(x)e?™, we obtain

oo d T
G =D G (m) 900

A—i

A Al A—i i d m d A—i—m 00
e e e (G R (G

(34)
Using the properties of asymptotic expansions given by Lemma 1, we can show that

(%) "h(x) € AV-2m
(55)&@© =00 e,
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where ¢ € A“®=2) and consequently

a9 " d \m ¢(x>}_ . b (%)
o[l () e

where the function H; m(x) € Av+0-—i-mk=2),
By using Lemma 1, we can show that G(x) can be rewritten as

G(x) = H(x)e?™, (35)

where H(x) € Av++k=2),
sin(x) satisfies a second-order, linear differential equation given by

sin(x) = —sin”(x). (36)

If we consider F(x) = G(x) sin(x), then sin(x) = F(x)/G(x). By substituting this in
the above differential equation after G(x) is replaced with H(x) €™, we can obtain a
second-order, linear differential equation satisfied by F(x), which is given by

FX) = qu(x)F'(X) + G(x)F"(x), (37)
where the coefficients g1 (x) and g2(x) are defined by
2(¢'0) + )
+ (@00 + 558)" = (00 + 1)’
-1
+ (9700 + H2)% = (900 + H2)"

qi(X) =

(38)

Q2(x) =

Using Lemma 1, we can show that if k = 0, then g;(x) € AV and gp(x) € A©; other-
wise g1 (x) € ACKD and gp(x) € ACKHD,

If kK > 0 and ag(¢1) < 0, then F(x) is exponentially, decreasing as x — +oo and con-
sequently isintegrable on [0, +o0] andfor al | =i,2,i =1, 2,

lim ' P 0)FV(x) =0
X——+00

It is easy to show that G o = limy_, 1o X' (X) = Ofor i = 1, 2; thus for every integer
| > -1

2
D=1 —i+Dgo=0%#1

All the conditions required to apply the D-transformation are now shown to be satisfied
by F(x).
The approximation of [,"*° F(x)dx = [;" f(x) dx isgiven by

D(Z) _ / F)dx + (=D)'"*1G(x )XZZ 'Bl' | -0,1,...n, (39
|

wherex; = (I + Dz, forl =0, 1, ..., which are the successive zeros of sin(x).
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Following Levinin [25], we can use Cramer’srule, since the zeros of sin(x) are equidis-
tant, to obtain the simple solution which is given by (29) for the unknown SD®. =

Now let us consider theintegrand F7(x) = g(Xx) j» (vXx) of T, 1), where g(x) isdefined
by
o, Ku [Ra1v12(S, )] Ky, [ Raayaa(t, )]

= x™ c2([o, )
900 = X 0T [ym 0T < C 10D

Let the functions ¢1(X) and ¢,(x) be defined by

1 = Roya(s, X) = Rzl\/(l — )2 +st2+s(1—s)x2e AY

92 = Ruyaa(t. x) = Rupy/ (1~ D8Z +182 + (1 — X € AD.

If we let ¢(X) = ¢1(X) + ¢2(X), then from Lemma 1 it follows that ¢ (x) € AL and
ao(¢) = ao(p1) + ao(¢p2) # 0.

Using these arguments, we can rewrite the function g(x) as

h(X) c A(V1+VZ_1+nX_ny12_ny34)

= h(x)e*™ i
g(x) = h(x)e {¢ e AD  with ag(¢) > 0.

Letl bein{0,1,..., 1 — 1}

l—1+1 i)l -1 _ - (I) (nx+)t—l)!! ny+l—2i
X (xdx R COEDI) D U Frriv s e e

i=0 j=0
X<|—i)< d >i<RV1[R21m<s,x>])
j x dx [vi2(s, X)] ™2

d =] sz[R34y34(t» X)]
X<W> ( [ysa(t, )]s ) (40

Thetwo last terms on the right-hand side of the above equation are defined for x = 0 and
fordll,i,andj.

Theintegersa vary fromlmin, whichisgivenby (19) tony; thusforall =0, 1, ..., A =1,
ny — | > 0 and consequently forali =0,1,..., [, theinteger ny +1 — 2i > 1.

From the above argumentsit followsthat forall =0,..., A — 1,

|
lim x' 1 dedx> <x“g(x>)] jio1a(x) = 0.

x—0

All the conditions of Theorem 2 are now shown to be fulfilled by the integrand F 7 (x).
The semi-infiniteintegral 7 (s, t) can be rewritten as

. 100 d \'/ o s 1 Kn[Rayia(s, x)]
j(s’t)—m,/o Km) (X Ty 0
Ku,[ Raayaa(t, X)]

[yan(L ] )} sin(vx) dx (41)
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_ 1 f/(”“)”/” d \* an+,\r_1Ru1[R21)/12(S,X)]
VL= xdx [v12(8, X)] ™2

sz[R34y34(t7 X)] .
X W)] Sn(UX) dx. (42)

The approximation of 7 (s, t) is given by

1 (T A+ 4 DR/ X3 G064 )]
v H(TH @i+ D/ XRG04

where x =(+1DZ for 1=0,1,...,G(x) = (%)*(x*‘lg(x)) and where F(X)=
Jo G sin(vt) dt.

The function G(x) can be easily computed by using Eg. (7), the Leibnitz formula, and
thefact that & = 424

dx dz*
Let j bein N; if n,1o = 2v, then

( d )j{Rul[RZlVH(S’ X)]

X dx [v12(8, X)]?*

: 43)

52,))
SD@D =

Kuot [Re1yaz(s, X)]
[y12(s, x)]201+D)

} = (Dl -9) (44)

For n,1» < 2v1, weobtain
d \! [ku[Reryia(s. 0]
x dx [y12(s, X)]™2

j .
_ | PPN (2vy — n ! N V1+1 i[Roy12(S, X)]
- .Z:(:) <i )( Y (2v1 — ny,, — 20N S(1-s) [ya(s, =2 (45)

6. NUMERICAL RESULTS

The finite integrals involved in Egs. (28) and (43) are transformed into finite sums
for foodx = iy fx)l"“ f (x) dx and each term of the finite sum is evaluated using the
Gauss-L egendre quadrature of order 16. Thefiniteintegralsinvolved in Egs. (24) and (42)
are evaluated using the Gauss-Legendre quadrature of order 16. Numerical results are
presented on Tables [-VIII.

TABLE |
Values of j(s t) Obtained with 15 Correct Decimals Using the I nfinite Series (24)

s t w N, A R R R R & & ma Js

0.999  0.999 5/2
0.999 0.005 5/2

5 25 50 75 60 15 10 182 0.133288836250D+01
3
0.005 0.005 7/2 7
5
9

25 40 50 65 20 10 173 0.713647099798D—01
15 17 37 35 20 10 172 0.536376822348D—-02
15 20 60 35 30 20 157 0.391621109662D+00
40 60 65 75 15 20 343 0.189344506463D—02
55 60 85 75 50 10 215 0.142649644276D—02
35 65 90 50 25 20 70  0.121634061600D—02
20 30 70 50 30 25 135 0.100732525411D—-04

0005 0999 9/2
0999 0999 9/2

0999 0005 11/2 11
0005 0005 13/2 11
0005 0005 17/2 17

A A WWNRERFLO

Note. vy = vy, Nyyy =Ny, Ny = 4, &3 = &g, AN & = &
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TABLE Il
Values of J (s, t) Obtained with 15 Correct Decimals Using the I nfinite Series (42)

S t vy N, »~ R R R R & & max J(s.t)
0.999 0.999 5/2 5 0 25 50 75 60 15 1.0 181 0.133288836250D+01
0.999 0.005 5/2 3 1 25 40 50 65 20 10 192 0.713647099798D—01
0.005 0.005 7/2 7 1 15 17 37 35 20 10 152 0.536376822348D—02
0.005 0.999 9/2 5 2 15 20 60 35 30 20 19 0.391621109662D+00
0.999 0.999 9/2 9 3 40 60 65 75 15 20 272 0.189344506462D—02
0999 0.005 11/2 11 3 55 60 85 75 50 10 174 0.142649644276D—02
0.005 0.005 13/2 11 4 35 65 90 50 25 20 77  0.121634061600D—02
0.005 0.005 17/2 17 4 20 30 70 50 30 25 127  0.100732525411D—-04

Note. vz = vi, Nyyy =Ny, N = 4, §3 = 1, aNd 8y = &

TABLE I11
Evaluation of J (s, t) Using SD@9 (43)

S t V1 Ny, A Ry Ry Rs Ry & I n j (s, t) Error
0.999 0.999 5/2 5 0 25 50 75 60 15 10 4 0.1333D+01 0.53D-10
0999 0005 5/2 3 1 25 40 50 65 20 10 6 07136D-01 0.62D—10
0.005 0005 7/2 7 1 15 17 37 35 20 10 7 05364D-02 0.19D-10
0.005 0.999 9/2 5 2 15 20 60 35 30 20 9 0.3916D+00 0.64D—10
0999 0999 9/2 9 3 40 60 65 75 15 20 5 0.1893D-02 0.19D-10
0999 0005 112 11 3 55 60 85 75 50 10 7 01426D—02 051D-10
0005 0005 13/2 11 4 35 65 90 50 25 20 6 01216D—02 0.44D—10
0005 0005 17/2 17 4 20 30 70 50 30 25 5 01007D—04 0.13D—12

Note. v, = vi, Ny, =Ny, Ny = 4, 83 = &y, and & = &

TABLE IV
. ~ . _2
Evaluation of J (s, t) Using HD®@ (28)

s t w n, A R R R R & & n J(s. ) Error
0999 0999 5/2 5 0 25 50 75 60 15 10 8 0.1333D4+01 0.72D-09
0999 0005 5/2 3 1 25 40 50 65 20 10 9 07136D-01 0.28D—09
0.005 0.005 7/2 7 1 15 17 37 35 20 10 9 05364D-02 0.53D-10
0.005 0999 9/2 5 2 15 20 60 35 30 20 9 03916D+00 0.15D—07
0.999 0.999 9/2 9 3 40 60 65 75 15 20 9 0.1893D-02 0.10D-09
0.999 0.005 11/2 11 3 55 60 85 75 50 10 8 0.1426D-02 0.93D-10
0005 0005 13/2 11 4 35 65 90 50 25 20 9 01216D—02 0.80D—09
0.005 0.005 17/2 17 4 20 30 70 50 30 25 9 01007D-04 0.52D-11

Note. v, = vi, Ny, =Ny, Ny = 4, 83 = &1, aNd & = &
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TABLE V
Values of J,Z%%?‘,Z‘},%O Obtained with 15 Exact Decimals Using the I nfinite Series (24)

N,00.N400
no n on, n A R R, Rs Ry & & I, 00.N00
1 1 5 0 0 1.5 35 6.5 4.5 3.0 25 0.171288775969805D—01
2 1 7 1 1 3.0 45 75 5.0 2.0 25 0.109643380336422D+00
2 2 9 2 2 25 35 55 45 2.0 1.5 0.550614613833544D+01
3 2 11 2 2 2.0 35 5.0 4.5 1.0 3.0 0.803372062349496D+-01
3 3 13 3 3 1.0 3.0 50 45 2.0 1.5 0.524493460602543D+-00
4 3 15 3 3 2.0 5.0 85 6.0 15 2.0 0.138426701495125D+-00
4 4 17 4 4 4.5 5.0 9.0 6.5 35 1.5 0.127171435604003D—02

Note. Ng = Ny, Ny = Ny, Ny, = Ny, &3 = &, 80 & = 6. R = (R,0,0) fori = 1,2, 3, 4.

TABLE VI
Values of 7,204 Obtained with 15 Exact Decimals Using the Infinite Series (42)

N,00,N,400
ny n, Ny Ny A Ry R, Rs Ry & & Injoo, N300
1 1 5 0 0 15 35 6.5 45 30 25 0.171288775969805D—01
2 1 7 1 1 30 45 75 50 20 25 0.109643380336422D+00
2 2 9 2 2 25 35 55 45 20 15 0.550614613833540D+01
3 2 11 2 2 20 35 50 45 1.0 30 0.803372062349499D+01
3 3 13 3 3 1.0 3.0 5.0 45 20 15 0.524493460602543D+00
4 3 15 3 3 20 50 85 6.0 15 20 0.138426701495125D+00
4 4 17 4 4 45 50 9.0 6.5 35 15 0.127171435604001D—02

Note. n3 = ny, Ny =Ny, N,y

=Ny G = and gy =& R = (R,0,0) fori =1,2,3,4.

TABLE VII

Evaluation of j,flzo%?;:;g%o Using SD?? (43) for Evaluating the Semi-Infinite Integrals J (s, t)
nn N N, nNoooA R R, Rs R, Iel & n \7&20%? hn;;o Error
11 5 0 0 15 35 65 45 30 25 4 01712D-01 0.69D—13
2 1 7 1 1 30 45 75 50 20 25 5 01096D+00 0.46D—11
2 2 9 2 2 25 35 55 45 20 15 6 05506D+01 0.12D-12
3 2 11 2 2 20 35 50 45 10 30 4 08033D+01 0.92D—12
3 3 13 3 3 10 30 50 45 20 15 4 05244D+00 0.29D-11
4 3 15 3 3 20 50 85 60 15 20 3 01384D+00 0.78D-11
4 4 17 4 4 45 50 90 65 35 15 3 01271D-02 055D—14

Note. Ny = Ny, Ny = Ny, Ny, =Ny, 83 = 03,80 & = &. R = (R, 0,0) fori =1,2,3,4.
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TABLE VIII
Evaluation of 7,204 Using HD@ (28) for Evaluating the Semi-Infinite Integrals J (s, t)

n

N,00,N,400
e Mk A Ry Ry Rs Ry & &2 n Inyoo.ny00 Error

1 1 5 0 0 15 35 65 45 30 25 6 01712D-01 0.10D-10
2 1 7 1 1 30 45 75 50 20 25 6 0109%6D+01 0.39D-10
2 2 9 2 2 25 35 55 45 20 15 6 05506D+01 0.23D-11
3 2 11 2 2 20 35 50 45 10 30 6 08033D+01 0.26D-11
3 3 13 3 3 10 30 50 45 20 15 5 05244D+00 047D-11
4 3 15 3 3 20 50 85 60 15 20 5 01384D+00 0.51D-11
4 4 17 4 4 45 50 90 65 35 15 4 01271D-02 0.43D-13

Note: Nz = Ny, Ny = Nz, Ny, =Ny, &3 = G, ad & = 6. R = (R, 0,0) fori =1,2,3,4.

The values with 15 correct decimals are obtained for the integrals by using the infinite
series (24) and (42), which we sum until N = max (see Tables|, I, V, and VI).

Thelinear set of Egs. (28) is solved using the LU decomposition method.

The numerical values of the semi-infinite integrals J (s, t), are obtained for s = 0.005
or 0.999 andt = 0.005 or 0.999. Note that in these regions, the oscillations of the integrand
become very rapid.

In the evaluation of 7o mey (see Tables V-VI11) we let n, and A vary to compare the
efficiency of the new method in evaluating semi-infiniteintegralswhose integrands are very
oscillating.

7. CONCLUSION

The Fourier-transform method allowed analytical expressions to be developed for the
two-€electron, four-center Coulomb integrals by choosing the B functions as a basis set of
atomic orbitals. The numerical evaluation of these analytical expressions presents severe
computational difficulties due to the presence of semi-infinite, very oscillatory integrals.

It was shown that these semi-infiniteintegrals are suitable for application of the nonlinear
D-transformation and the H D method.

In the present work, we showed that we can further simplify the application of the above
methods with the help of useful properties of the sine, spherical Bessel, and reduced Bessel
functions.

The use of Cramer’s rule for calculating the approximations SD(?1) of the semi-infinite
integrals is made possible by the fact that the zeros of the sine function are equidistant.
The computation of the successive zeros of the integrands and a method to solve the linear
systems are avoided.

The computation of the function G(x) = (%)A(xk‘lg(x)) does not present any diffi-
culty as can be seen from Egs. (44) and (45).

The numerical results section shows the unprecedented accuracy obtained using the SD
approach to evaluating the two-electron, four-center Coulomb integrals (see Tables 1V and
V1I1), which are the most difficult type involved in ab initio and density functional theory
molecular structure calculations.
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