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Two-electron, four-center Coulomb integrals are undoubtedly the most difficult
type involved in ab initio and density functional theory molecular structure cal-
culations. Millions of such integrals are required for molecules of interest; there-
fore rapidity is the primordial criterion when the precision has been reached. This
work presents an extremely efficient approach for improving convergence of semi-
infinite very oscillatory integrals, based on the nonlinear D̄-transformation and some
useful properties of spherical Bessel, reduced Bessel, and sine functions. The new
method is now shown to be applicable to evaluating the two-electron, four-center
Coulomb integrals over B functions. The section with numerical results illustrates
the unprecedented efficiency of the new approach in evaluating the integrals of
interest. c© 2002 Elsevier Science (USA)

Key Words: nonlinear transformations; semi-infinite integrals; molecular multi-
center integrals; Bessel functions; oscillatory integrals; convergence accelerators.

1. INTRODUCTION

Coulomb integrals are present in all accurate molecular, electronic structure calculation
techniques. At the ab initio level, the two-electron two-, three-, and four-center Coulomb
integrals have long been the source of bottlenecks. In density functional theory, we also need
the two-electron, two-center Coulomb integrals and a three-center term from the potential.

The ab initio calculations are usually carried out using the LCAO-MO approach, where
molecular orbitals are built from a linear combination of atomic orbitals [1]. The choice of the
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basis set of atomic orbitals is of utmost importance in this approach. A good atomic orbital
basis should satisfy two conditions for analytical solutions of the appropriate Schrödinger
equation, namely the exponential decay at infinity [2] and the cusp at the origin [3].

A good basis set for molecular orbitals should also satisfy two pragmatic requirements:

1. Already short expansions of the atomic orbitals in terms of the basis functions should
provide sufficiently accurate results.

2. The molecular multicenter integrals should be computed efficiently.

The Gaussian-type functions (GTFs) [4–6] are the most popular functions used in
ab initio calculations. This is due to the fact that with GTFs the numerous molecular
integrals can be evaluated rather easily. Unfortunately, these Gaussian basis functions fail
to satisfy the aforementioned mathematical conditions satisfied by exact eigenfunctions of
atomic and molecular Schrödinger equations.

The exponential-type functions (ETFs) are better suited than GTFs to represent electron
wave functions near the nucleus and at long range [7]; this implies that a smaller number
of ETFs than of GTFs is needed for comparable accuracy. This good convergence of ETFs
can be explained by the fact that they show the same asymptotic behavior as exact solutions
of atomic and molecular Schrödinger equations.

Among the ETFs, Slater-type functions (STFs) [8, 9] are certainly the simplest analytical
functions. Hence, they have a dominating position in atomic electronic structure calcula-
tions. However, the use of STFs in molecular calculations has been prevented by the fact
that their multicenter integrals are extremely difficult to evaluate for polyatomic molecules,
particularly bielectronic terms.

Although B functions [10–12] are more complicated than STFs, they have some remark-
able mathematical properties applicable to multicenter integral problems. They possess a
relatively simple addition theorem [11, 13–15] and extremely compact convolution integrals
[13, 16], and their Fourier transform is of exceptional simplicity [14, 17]. Note that STFs
can be expressed as a linear combination of B functions [12, 13].

The B functions are well adapted to the Fourier-transform method [18–20], which is one
of the most successful approaches to the evaluation of multicenter integrals. This method
allowed integral representations in terms of nonphysical variables for the molecular mul-
ticenter integrals over B functions to be developed [19, 20]. The numerical evaluation of
these integral representations in terms of nonphysical variables presents severe computa-
tional difficulties due to the presence of semi-infinite very oscillatory integrals.

The use of Gauss–Laguerre quadrature is inefficient for evaluating these kinds of integrals
as we showed in [21–23]. These semi-infinite integrals can be transformed into infinite
series. These series are convergent and alternating; thus the sum of the first N terms, for N
sufficiently large, gives a good approximation of the corresponding semi-infinite integral.
Unfortunately, the calculation times are prohibitive. Although we accelerate the convergence
of the infinite series by using the epsilon algorithm of Wynn [24] or Levin’s u transform
[25], the calculation times are still prohibitive for good accuracy.

In [21–23], we showed the efficiency of the nonlinear D̄-transformation due to Sidi
[26, 28] and Levin and Sidi [27] for improving convergence of these kinds of semi-infinite
oscillatory integrals. To apply the D̄-transformation, the integrand is required to satisfy
a linear differential equation of order m with coefficients having asymptotic expansions
in inverse powers of their arguments. The approximation D̄(m)

n , which as n becomes large
converges very quickly to the exact value of the semi-infinite integral, is obtained by solving
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a linear set of equations of order n(m − 1) + 1 and where it is necessary to calculate the
(m − 1) successive derivatives of the integrands and its n(m − 1) successive zeros [26, 28].
In the case of the two-electron, four-center Coulomb integrals, the integrand satisfies a sixth-
order differential equation of the form required to apply the D̄-transformation [21]. This
makes the application of the D̄-transformation very difficult, especially when the values of
the quantum numbers are large.

Previous work [22, 29] focused on the use of some properties of the reduced Bessel and
spherical Bessel functions to reduce the order of the differential equation required to apply
the D̄-transformation to 2, keeping all the other conditions fulfilled. This led to the H D̄
method, which greatly simplified the application of the D̄-transformation. The calculation
of the successive derivatives of integrands is avoided and the order of the linear set of
equations to solve is reduced to n + 1. The computation of the n + 1 successive zeros of
the spherical Bessel function and its first derivative is necessary for the calculations.

The purpose of the present work is to further simplify the application of the above non-
linear transformations and to further reduce the calculation times keeping the same high
accuracy. This is made possible by the help of some useful properties of sine, spherical
Bessel, and reduced Bessel functions and the use of Cramer’s rule for calculating approx-
imations of semi-infinite highly oscillatory integrals. The computation of the successive
zeros of the integrand is avoided.

The numerical results section shows the unprecedented efficiency of the new approach
in evaluating the two-electron, four-center. Coulomb integral over B functions.

2. DEFINITIONS AND BASIC FORMULAE

The two-electron, four-center Coulomb integral over B functions is defined by

J n2l2m2,n4l4m4
n1l1m1,n3l3m3

=
∫

�R, �R′

[
Bm1

n1,l1
(ζ1, �R − −→

O A)
]∗[

Bm3
n3,l3

(ζ3, �R′ − −→
OC)

]∗

× 1

| �R − �R′| Bm2
n2,l2

(ζ2, �R − −→
O B)Bm4

n4,l4
(ζ4, �R′ − −→

O D) d �R d �R′, (1)

where A, B, C , and D are four arbitrary points of the Euclidean space E3, while O is the
origin of the fixed coordinate system.

The B function is defined as [11, 12]

Bm
n,l(ζ, �r) = (ζr)l

2n+l(n + l)!
k̂n− 1

2
(ζr)Y m

l (θ�r , ϕ�r ), (2)

where n, l, m are the quantum numbers such that n = 1, 2, . . . , l = 0, 1, . . . , n − 1, and
m = −l, −l + 1, . . . , l − 1, l and where Y m

l (θ, ϕ) stands for the surface spherical harmonic
and is defined by [30]

Y m
l (θ, ϕ) = im+|m|

[
(2l + 1)(l − |m|)!)

4π(l + |m|)!)
] 1

2

P |m|
l (cos θ)eimϕ. (3)

Pm
l (x) is the associated Legendre polynomial of lth degree and mth order:

Pm
l (x) = (1 − x2)m/2

(
d

dx

)l+m[
(x2 − 1)l

2l l!

]
. (4)



4 HASSAN SAFOUHI

The reduced Bessel function k̂n+ 1
2
(z) for n ∈ N0 is defined by [10, 11]

k̂n+ 1
2
(z) −

√
2

π
(z)n+ 1

2 Kn+ 1
2
(z) = zne−z

n∑
j=0

(n + j)!

j!(n − j)!

1

(2z) j
, (5)

where Kn+ 1
2

stands for the modified Bessel function of the second kind [31].
Reduced Bessel functions satisfy the recurrence relation [10]

k̂n+ 1
2
(z) = (2n − 1)k̂n− 1

2
(z) + z2k̂n− 3

2
(z). (6)

A useful property satisfied by k̂n+ 1
2
(z) is given by [31]

(
d

z dz

)m
[

k̂n+ 1
2
(z)

z2n+1

]
=

(
d

z dz

)m[√
π

2

Kn+ 1
2
(z)

zn+ 1
2

]
= (−1)m

k̂n+m+ 1
2
(z)

z2(n+m)+1
. (7)

The Slater-type function is defined in normalized form according to the relationship [8, 9]

χm
n,l(ζ, �r) = N (n, ζ )rn−1e−ζr Y m

l (θ�r , ϕ�r ), (8)

where N (n, ζ ) = ζ−n+1[(2ζ )2n+1/(2n)!]
1
2 stands for the normalization factor.

The Slater-type function can be expressed as a finite linear combination of B functions
[12]

χm
n,l(ζ, �r) =

n−l∑
p= p̃

(−1)n−l−p(n − l)!2l+p(l + p)!

(2p − n − l)!(2n − 2l − 2p)!!
Bm

p,l(ζ, �r), (9)

where

p̃ =
{

(n − l)/2 if n − l even

(n − l + 1)/2 if n − l odd,
(10)

and where the double factorial is defined by

(2k)!! = 2 × 4 × 6 × · · · × (2k) = 2kk!

(2k + 1)!! = 1 × 3 × 5 × · · · × (2k + 1) = (2k + 1)!

2kk!
(11)

0!! = 1.

The Fourier transform B̄m
n,l(ζ, �p) of Bm

n,l(ζ, �r ) is given by [14, 17]

B̄m
n,l(ζ, �p) = 1

(2π)3/2

∫
�r
e−i �p· �r Bm

n,l(ζ, �r ) d �r (12)

=
√

2

π
ζ 2n+l−1 (−i |p|)l

(ζ 2 + |p|2)n+l+1
Y m

l (θ �p, ϕ �p). (13)
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The Rayleigh expansion of the plane wave functions is given by [32]

e±i �p· �r =
+∞∑
l=0

l∑
m¬−1

4π(±i)l jl(| �p||�r |)Y m
l (θ�r , ϕ�r )

[
Y m

l (θ �p, ϕ �p)
]∗

. (14)

The spherical Bessel function jl(x) of order l ∈ N is defined by [31, 33]

jl(x) = (−1)l xl

(
d

x dx

)l

j0(x) = (−1)l xl

(
d

x dx

)l( sin(x)

x

)
, (15)

where jl(x) and its first derivative j ′
l (x) satisfy the recurrence relations [33]

{
x jl−1(x) + x jl+1(x) = (2l + 1) jl(x)

l jl−1(x) − (l + 1) jl+1(x) = (2l + 1) j ′
l (x).

(16)

In the following, we denote the successive zeros of jl(x) by j n
l+ 1

2
with n = 1, 2, . . . . j0

l+ 1
2is assumed to be 0.

The Gaunt coefficients are defined as [34–40]

〈l1m1|l2m2|l3m3〉 =
∫ π

θ=0

∫ 2π

ϕ=0

[
Y m1

l1
(θ, ϕ)

]∗
Y m2

l2
(θ, ϕ)Y m3

l3
(θ, ϕ) sin θ dθ dϕ. (17)

These coefficients linearize the product of two spherical harmonics,

[
Y m1

l1
(θ, ϕ)

]∗
Y m2

l2
(θ, ϕ) =

l1+l2∑
l=lmin,2

〈l2m2|l1m1|lm2 − m1〉Y m2−m1
l (θ, ϕ), (18)

where the subscript l = lmin, 2 in the summation symbol implies that the summation index
l runs in steps of 2 from lmin to l1 + l2 and the constant lmin is given by [37]

lmin¬
{

max(|l1 − l2|, |m2 −m1|), if l1 + l2 + max(|l1 − l2|, |m2 −m1|) is even

max(|l1 − l2|, |m2 −m1|) + 1, if l1 + l2 + max(|l1 − l2|, |m2 −m1|) is odd.
(19)

The Fourier integral representation of the Coulomb operator 1
|�r− �R1| is given by [41]

1

|�r − �R1|
= 1

2π2

∫
�K

e−i �K ·(�r− �R1)

k2
d �k. (20)

3. TWO-ELECTRON, FOUR-CENTER COULOMB INTEGRALS OVER B FUNCTIONS

By substituting the integral representation of the Coulomb operator (20) in the expression
of the two-electron, four-center Coulomb integrals (1), we obtain

J n2l2m2,n4l4m4
n1l1m1,n3l3m3

= 1

2π2

∫
ei �x · �R41

x2

〈
Bm1

n1,l1
(ζ1, �r )|e−i �x ·�r |Bm2

n2,l2
(ζ2, �r − �R21)

〉
�r

× 〈
Bm4

n4,l4
(ζ4, �r )|e−i �x ·�r |Bm3

n3,l3
(ζ3, �r − �R34)

〉∗
�r d �x, (21)
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where �R1 = −→
O A, �R2 = −→

O B, �R3 = −→
OC, �R4 = −→

O D, �r = �R − �R1, �r = �R′ − �R4, and �Ri j =
�Ri − �R j .

The Fourier-transform method allowed analytical expressions to be developed for the
terms [19, 20]

〈
Bmi

ni ,li
(ζi , �r )|e−i �x ·�r |Bm j

n j ,l j
(ζ j , �r − �R)

〉
�r .

This great result led to analytical expressions for one- and two-electron multicenter integrals
over B functions. In the case of two-electron, four-center Coulomb integrals, this expression
is given by [20]

J n2l2m2,n4l4m4
n1l1m1,n3l3m3

= 8(4π)5(2l1 + 1)!!(2l2 + 1)!!
(n1 + l1 + n2 + l2 + 1)!

(n1 + l1)!(n2 + l2)!

× (−1)l1+l2(2l3 + 1)!!(2l4 + 1)!!
(n3 + l3 + n4 + l4 + 1)!

(n3 + l3)!(n4 + l4)!
ζ

2n1+l1−1
1 ζ

2n2+l2−1
2

× ζ
2n3+l3−1
3 ζ

2n4+l4−1
4

l1∑
l ′1−0

µ12∑
m ′

1=µ11

i l1+l ′1
〈l1m1|l ′1m ′

1|l1 − l ′1m1 − m ′
1〉

(2l ′1 + 1)!![2(l1 − l ′1) + 1]!!

×
l2∑

l ′2=0

µ22∑
m ′

2=µ21

i l2+l ′2(−1)l ′2
〈l2m2|l ′2m ′

2|l2 − l ′2m2 − m ′
2〉

(2l ′2 + 1)!![2(l2 − l ′2) + 1]!!

×
l3∑

l ′3=0

µ32∑
m ′

1=µ31

i l3+l ′3
〈l3m3|l ′3m ′

3|l3 − l ′3m3 − m ′
3〉

(2l ′3 + 1)!![2(l3 − l ′3) + 1]!!

×
l4∑

l ′4=0

µ42∑
m ′

4=µ41

i l4+l ′4(−1)l ′4
〈l4m4|l ′4m ′

4|l4 − l ′4m4 − m ′
4〉

(2l ′4 + 1)!![2(l4 − l ′4) + 1]!!

×
l ′1+l ′2∑

l=l1,min,2

〈l ′2m ′
2|l ′1m ′

1|lm ′2 − m ′
1〉Rl

21Y
m ′

2−m ′
1

l

(
θ �R21

, ϕ �R21

)

×
l1−l ′1+l2−l ′2∑
l12=l ′

1,min,2

〈l2 − l ′2m2 − m ′
2|l1 − l ′1m1 − m ′

1|l12m21〉

×
l ′3+l ′4∑

l ′=l2,min,2

〈l ′4m ′
4|l ′3m ′

3|l ′m ′
4 − m ′

3〉Rl ′
34Y

m ′
4−m ′

3
l ′

(
θ �R34

, ϕ �R34

)

×
l3−l ′3+l4−l ′4∑
l34=l ′

2,min,2

〈l4 − l ′4m4 − m ′
4|l3 − l ′3m3 − m ′

3|l34m43〉

×
l12+l34∑

λ=l ′′min,2

(−i)λ〈l12m21|l34m43|λµ〉

×
�l12∑
j12−0

�l34∑
j34=0

(
�l12

j12

)(
�l34

j34

)
(−1) j12+ j34

2ν1+ν2+l+l ′+1
(
ν1 + 1

2 + l
)
!
(
ν2 + 1

2 + l ′
)
!
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×
∫ 1

s=0

sn2+l2+l1(1 − s)n1+l1+l2

sl ′1(1 − s)l ′2

∫ 1

t=0

tn4+l4+l3(1 − t)n3+l3+l4

t l ′3(1 − t)l ′4
Y m2−µ

λ (θ�v, ϕ�v)

×
[ ∫ +∞

x=0
xnx

k̂ν1 [R21 γ12(s, x)]

[γ12(s, x)]nγ12

k̂ν2 [R34 γ34(t, x)]

[γ34(t, x)]nγ34
jλ(vx) dx

]
dt ds (22)

µ − (m2 − m ′
2) − (m1 − m ′

1) + (m4 − m ′
4) − (m3 − m ′

3)

nγ12 = 2(n1 + l1 + n2 + l2) − (l ′1 + l ′2) − l + 1

nγ34 = 2(n3 + l3 + n4 + l4) − (l ′3 + l ′4) − l ′ + 1

µ1i = max(−l ′i , mi − li + l ′i ), for i = 1, 2, 3, 4

µ2i = min(li , mi + li − l ′i ), for i = 1, 2, 3, 4

[γ12(s, x)]2 = (1 − s)ζ 2
1 + sζ 2

2 + s(1 − s)x2

[γ34(t, x)]2 = (1 − t)ζ 2
3 + tζ 2

4 + t (1 − t)x2

nx = l1 − l ′1 + l2 − l ′2 + l3 − l ′3 + l4 − l ′4

ν1 = n1 + n2 + l1 + l2 − l − j12 + 1

2

ν2 − n3 + n4 + l3 + l4 − l ′ − j34 + 1

2

�v = (1 − s) �R21 + (1 − t) �R43 − �R41

�′l12 = l ′1 + l ′2 − l

2
, �′l34 = l ′3 + l ′4 − l ′

2
mi j = mi − m ′

i − (m j − m ′
j ).

The principal difficulties in the numerical evaluation of the above expression arise mainly
from the presence of the semi-infinite integral, which will be referred to as J̃ (s, t), whose
integrand, which will be referred to as FJ (x), oscillates rapidly due to the presence of the
spherical Bessel function jλ(vx) in particular for large values of v and λ. Note that in the
regions where s and t are close to 0 or 1, the oscillations become very rapid. Indeed, when
we make the substitutions s = 0 or 1 and t = 0 or 1, the integrand will be reduced to the
term xnx jλ(vx), because the terms

k̂ν1 [R21 γ12(s, x)]

[γ12(s, x)]nγ12

and

k̂ν2 [R34 γ34(t, x)]

[γ34(t, x)]nγ34
,

which are exponentially decreasing, become constants and therefore the rapid oscillations
of jλ(vx) cannot be damped and suppressed by the exponential decreasing functions k̂ν . It
should be mentioned that the regions where s and t are close to 0 or 1 carry a very small
weight due to factors si2(1 − s)i1 , t i4(1 − t)i3 in the integrands (22) [42–45].
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Let us consider the semi-infinite integral J̃ (s, t). It is given by

J̃ (s, t) =
∫ +∞

0
xnx

k̂ν1 [R21 γ12(s, x)]

[γ12(s, x)]nγ12

k̂ν2 [R34 γ34(t, x)]

[γ34(t, x)]nγ34
jλ(vx) dx (23)

−
+∞∑
n=0

∫ j n+1
λ,v

j n
λ,v

xnx
k̂ν1 [R21 γ12(s, x)]

[γ12(s, x)]nγ12

k̂ν2 [R34 γ34(t, x)]

[γ34(t, x)]nγ34
jλ(vx) dx, (24)

where j n
λ,v = j n

λ+ 1
2
/v, n = 1, 2, . . . , which are the successive zeros of jλ(vx). j0

λ,v is
assumed to be 0.

The above infinite series is convergent and alternating therefore the sum of the first N
terms, for N sufficiently large, gives a good approximation of the semi-infinite integral,
but the use of this approach has been prevented by the fact that the calculation times for
a sufficient accuracy are prohibitive. We have shown [21, 22] that the use of the Gauss-
Laguerre quadrature for evaluating these kinds of integrals gives inaccurate results in the
regions where s and t are close to 0 or 1 since the integrand cannot be represented by a
function of the form g(x)e−λx where g(x) is not a rapidly oscillating function. The use of
the epsilon algorithm of Wynn [24] or Levin’s u transform [25] accelerates the convergence
of the infinite series but the calculation times are still prohibitive [21, 22].

4. THE D̄ AND HD̄ METHODS FOR ACCELERATING CONVERGENCE

OF SEMI-INFINITE OSCILLATORY INTEGRALS

For the following, we define A(γ ) for a certain γ as the set of infinitely differentiable
functions p(x), which have asymptotic expansions in inverse powers of x as x → +∞, of
the form

p(x) ∼ xγ

(
a0 + a1

x
+ a2

x2
+ · · ·

)
(25)

and their derivatives of any order have asymptotic expansions, which can be obtained by
differentiating that in (25) term by term.

From (25) it follows that A(γ ) ⊃ A(γ−1) ⊃ · · · .
We denote Ã(γ ) for some γ , the set of functions p(x) such that p(x) ∈ A(γ ) and

limx→+∞ x−γ p(x) �= 0. Thus, p ∈ Ã(γ ) has an asymptotic expansion in inverse powers
of x as x → +∞ of the form given by (25) with a0 �= 0.

We defined the functional α0(p) by α0(p) = ao = limx→+∞ x−γ p(x).
We defined eÃ(k)

for some k as the set of g(x) = eφ(x) where φ(x) ∈ Ã(k).

THEOREM 1 [26]. Let f (x) be integrable on [0, +∞] (i.e.,
∫ +∞

0 f (t) dt exists) and let
it satisfy a linear differential equation of order m of the form

f (x) =
m∑

k−1

pk(x) f (k)(x), pk ∈ A(ik ), ik ≤ k. (26)

If for every integer l ≥ −1,

m∑
k−1

l(l − 1) · · · (l − k + 1)pk,0 �= 1,
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where

pk,0 = lim
x→+∞ x−k pk(x), 1 ≤ k ≤ m,

and for i ≤ k ≤ m, 1 ≤ i ≤ m, limx→+∞ p(i−1)
k (x) f (k−i)(x) = 0, then the approximation

D̄(m)
n of

∫ ∞
0 f (t) dt , using the nonlinear D̄-transformation, satisfies the n(m − 1) + 1 equa-

tions given by [26]

D̄(m)
n =

∫ xi

0
f (t) dt +

m−1∑
k=1

f (k)(xl)xσk
l

n−1∑
i=0

β̄k,i

x i
l

, l = 0, 1, . . . , n(m − 1), (27)

where xl , l = 0, 1, . . . are the successive zeros of f (x). σk for k = 1, . . . , m − 1, are the
minima of k + 1 and sk , where sk is the largest of the integers s for which limx→+∞ xs f (k)(x)

= 0.
D̄(m)

n and β̄k,i for k = 1, . . . , m − 1, i = 0, 1, . . . , n −1 are the n(m −1)+1 unknowns.

In previous work [21], we showed that the integrand FJ (x) of J̃ (s, t) satisfies a sixth-
order, linear differential equation with coefficients having asymptotic expansion in inverse
powers of their argument x as x → +∞ and all the conditions to apply the D̄-transformation
are fulfilled.

The results obtained by applying this transformation were very satisfactory. Unfortunately
the computation of the fifth successive derivatives of the integrand and its 5n successive zeros
is necessary for the calculations as can be seen from (27). This presents severe numerical
and computational difficulties in particular when the values of the quantum numbers ni , li ,
and mi are large. The order of the linear set of equations to solve for calculating the
approximations D̄(m)

n is equal to 5n + 1; thus when the value of n is large, the calculations
become very difficult.

In [23, 29], we showed by using some helpful properties of spherical Bessel, reduced
Bessel, and Poincaré series [46] that we can obtain a second-order, linear differential
equation of the form required to apply the D̄-transformation for a function f (x) of the
form f (x) = g(x) jλ(x), where jλ(x) stands for the spherical Bessel function and g(x) =
h(x)eφ(x), and where h(x) ∈ Ã(γ ) for some γ and φ(x) ∈ Ã(k) for k > 0 and α0(φ) < 0.
The reduction of the order of the linear differential equation to 2 led to the H D̄ method
that greatly simplified the application of the D̄-transformation. The approximation H D̄(2)

n

of
∫ +∞

0 f (t) dt is given by [23, 29]

H D̄(2)
n =

∫ xl

0
f (t) dt + g(xl) j ′

λ(xl)x2
l

n−1∑
i=0

β̄1,i

x i
l

, l = 0, 1, . . . , n, (28)

where xl = j l+1
λ+ 1

2
for l = 0, 1, . . . , which are the successive zeros of jλ(x). H D̄(2)

n and
β̄1,i , i = 0, 1, . . . , n − 1 are the (n + 1) unknowns of the above linear system.

It is shown that that the integrand FJ (x) of J̃ (s, t) satisfies all the conditions for applying
the H D̄ method [22, 29], and consequently a good approximation of the semi-infinite
integral J̃ (s, t) can be obtained by solving the linear system (28).

As can be seen from (28), calculation of the successive derivatives is avoided, and we
only need to calculate the first derivative of the spherical Bessel function jλ(x). The order
of the linear system to solve using the H D̄ method is reduced to n + 1. This leads to a
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substantial reduction in the calculation times for high predetermined accuracy, but it is still
necessary to compute the n successive zeros of jλ(x) and to solve the linear system (28).

The purpose of this work is to further simplify the application of the above nonlinear
transformations to evaluating the two-electron, four-center Coulomb integral and to further
reduce the calculation times, keeping the same high predetermined accuracy.

5. THE SD̄ APPROACH TO EVALUATING SEMI-INFINITE HIGHLY OSCILLATORY

INTEGRALS AND APPLICATION

LEMMA 1. Let p(x) be in Ã(γ ) for some γ . Then

1. If γ �= 0, then p′(x) ∈ Ã(γ−1); otherwise p′(x) ∈ A(−2).
2. If q(x) ∈ Ã(δ), then p(x)q(x) ∈ Ã(γ+δ) and α0(pq) = α0(p)α0(q).

3. ∀k ∈ IR, xk p(x) ∈ Ã(k+γ ) and α0(xk p) = α0(p).
4. The function cp(x) ∈ Ã(γ ) and α0(cp) = cα0(p) for all c �= 0.
5. If q(x) ∈ A(δ) and γ − δ > 0, then the function p(x) + q(x) ∈ Ã(γ ) and α0(p + q) =

α0(p). If γ = δ and α0(p) �= −α0(q), then the function p(x) + q(x) ∈ Ã(γ ) and α0(p +
q) = α0(p) + α0(q).

6. For m > 0 an integer, pm(x) ∈ Ã(mγ ) and α0(pm) = α0(p)m.
7. The function 1/p(x) ∈ Ã(−γ ) and α0(1/p) = 1/α0(p).

The proof of Lemma 1 follows from the properties of Poincaré series [46].

LEMMA 2. Let φ ∈ Ã(k) where k is a positive integer and k �= 0. The function

k̂n+ 1
2
(φ(x)) ∈ Ã(nk)eÃ(k)

and can be written in the following form:

k̂n+ 1
2
(φ(x)) = φ1(x)e−φ(x),

where φ1 ∈ Ã(n k) and α0(φ1) = (α0(φ))n �= 0.

By using the analytical expression of the reduced Bessel function which is given by
Eq. (5) and using some properties of Poincaré series, one can easily demonstrate the valid-
ity of Lemma 2.

THEOREM 2. Let f (x) be a function of the form f (x) − g(x) jλ(x), where g(x) is in
C2([0, +∞]) which is the space of functions that are twice continuously differentiable on
[0, +∞], and of the form g(x) = h(x)eφ(x) and where h(x) ∈ Ã(γ ) and φ(x) ∈ Ã(k) for
some γ and k. If k > 0, α0(ϕ) < 0 and for all l = 0, . . . , λ − 1, limx→0 xl−λ+1[( d

x dx )l

(xλ−1g(x))] jλ−1−l(x) = 0, then f (x) is integrable on [0, +∞] (i.e.,
∫ +∞

0 f (t) dt exists)
and an approximation of

∫ +∞
0 f (x) dx is given by

SD̄(2, j)
n =

∑n+1
i=0

( n+1
i

)
(x0/π + i + j)n F(xi+ j )

/[
x2

i+ j G(xi+ j )
]

∑n+1
i=0

( n+1
i

)
(x0/α + i + j)n

/[
x2

i+ j G(xi+ j )
] , (29)

where xl = (l + 1)π for l = 0, 1, . . . , G(x) = ( d
x dx )λ(xλ−1g(x)) and where F(x) −∫ x

0 G(t) sin(t) dt.
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Proof. Let us consider
∫ +∞

0 f (x) dx = ∫ +∞
0 g(x) jλ(x). By replacing the spherical

Bessel function jλ(x) with its analytical expression given by (15), we obtain

∫ +∞

0
f (x) dx = (−1)λ

∫ +∞

0
xλg(x)

[(
d

x dx

)λ

j0(x)

]
dx . (30)

By integrating by parts until all the derivatives of j0(x) with respect to x dx disappear in
the last term on the right-hand side of (30), one can obtain

∫ +∞

0
f (x) dx = (−1)λ

[
λ−1∑
l=0

(−1)l

((
d

x dx

)l

(xλ−1g(x))

)((
d

x dx

)λ−1−l

j0(x)

)]+∞

0

+
∫ +∞

0

[(
d

x dx

)λ

(xλ−1g(x))

]
j0(x) x dx . (31)

Using Eq. (15) and replacing j0(x) by sin(x)

x , the above equation can be rewritten as

∫ +∞

0
f (x) dx = −

[
λ−1∑
l=0

xl−λ+1

((
d

x dx

)l

(xλ−1g(x))

)
jλ−1−l(x)

]+∞

0

+
∫ +∞

0

[(
d

x dx

)λ

(xλ−1g(x))

]
sin (x) dx, (32)

where g(x) is exponentially decreasing as x → +∞. From this it follows that
( d

x dx )l(xλ−1g(x)) is also exponentially decreasing as x → +∞ and consequently
limx→+∞ xl−λ+1[( d

x dx )l(xλ−1g(x))] jλ−1−l(x) = 0 for all l ≥ 0.
As limx→0 xl−λ+1( d

x dx )l(xλ−1g(x)) jλ−1−l(x) = 0 for l = 0, . . . , λ − 1, the above equa-
tion can be rewritten as

∫ +∞

0
f (x) dx =

∫ +∞

0

[(
d

x dx

)λ

(xλ−1g(x))

]
sin (x) dx . (33)

Let us consider the function G(x) = ( d
x dx )λ(xλ−1g(x)). By using the Leibnitz formulae

and the fact that g(x) = h(x)eφ(x), we obtain

G(x) =
λ∑

i=0

λ!!

(λ − 2i)!!
xλ−2i

(
d

x dx

)λ−i

g(x)

−
λ∑

i=0

λ−i∑
m=0

λ!!

(λ − 2i)!!

(
λ − i

m

)
xλ−2i

[(
d

x dx

)m

h(x)

][(
d

x dx

)λ−i−m

eφ(x)

]
.

(34)

Using the properties of asymptotic expansions given by Lemma 1, we can show that




(
d

x dx

)m
h(x) ∈ A(γ−2m)

(
d

x dx

)α
eφ(x) ¬ ϕ(x) eφ(x),
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where ϕ ∈ A(α(k−2)) and consequently

xλ−2i

[(
d

x dx

)m

h(x)

][(
d

x dx

)λ−i−m

eφ(x)

]
= Hi,m(x) eφ(x),

where the function Hi,m(x) ∈ A(γ+(λ−i−m)k−λ).
By using Lemma 1, we can show that G(x) can be rewritten as

G(x) = H(x) eφ(x), (35)

where H(x) ∈ Ã(γ+λk−λ).
sin(x) satisfies a second-order, linear differential equation given by

sin(x) = −sin′′(x). (36)

If we consider F(x) = G(x) sin(x), then sin(x) = F(x)/G(x). By substituting this in
the above differential equation after G(x) is replaced with H(x) eφ(x), we can obtain a
second-order, linear differential equation satisfied by F(x), which is given by

F(x) = q1(x)F ′(x) + q2(x)F ′′(x), (37)

where the coefficients q1(x) and q2(x) are defined by

q1(x) = 2
(
φ′(x) + H ′(x)

H(x)

)
1 + (

φ′(x) + H ′(x)

H(x)

)2 − (
φ′(x) + H ′(x)

H(x)

)′

(38)

q2(x) = −1

1 + (
φ′(x) + H ′(x)

H(x)

)2 − (
φ′(x) + H ′(x)

H(x)

)′ .

Using Lemma 1, we can show that if k = 0, then q1(x) ∈ A(−1) and q2(x) ∈ A(0); other-
wise q1(x) ∈ A(−k+1) and q2(x) ∈ A(−k+1).

If k > 0 and α0(φ1) < 0, then F(x) is exponentially, decreasing as x → +∞ and con-
sequently is integrable on [0, +∞] and for all l = i, 2, i = 1, 2,

lim
x→+∞ q(i−1)

l (x)F (l−i)(x) = 0.

It is easy to show that qi,0 = limx→+∞ x−i qi (x) = 0 for i = 1, 2; thus for every integer
l ≥ −1

2∑
i=1

l(l − 1) · · · (l − i + 1)qi,0 = 0 �= 1.

All the conditions required to apply the D̄-transformation are now shown to be satisfied
by F(x).

The approximation of
∫ +∞

0 F(x) dx = ∫ +∞
0 f (x) dx is given by

SD̄(2)
n =

∫ xl

0
F(x) dx + (−1)l+1G(xl)x2

l

n−1∑
i=0

β̄1,i

x i
l

, l − 0, 1, . . . n, (39)

where xl = (l + 1)π , for l = 0, 1, . . . , which are the successive zeros of sin(x).
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Following Levin in [25], we can use Cramer’s rule, since the zeros of sin(x) are equidis-
tant, to obtain the simple solution which is given by (29) for the unknown SD̄(2)

n . �

Now let us consider the integrand FJ (x) = g(x) jλ(vx) of J̃ (s, t), where g(x) is defined
by

g(x) = xnx
k̃ν1 [R21γ12(s, x)]

[γ12(s, x)]nγ12

k̂ν2 [R34γ34(t, x)]

[γ34(s, x)]nγ34
∈ C2([0, +∞]).

Let the functions φ1(x) and φ2(x) be defined by

φ1 = R21γ12(s, x) = R21

√
(1 − s)ζ 2

1 + sζ 2
2 + s(1 − s)x2 ∈ Ã(1)

φ2 = R34γ34(t, x) = R34

√
(1 − t)ζ 2

3 + tζ 2
4 + t (1 − t)x2 ∈ Ã(1).

If we let φ(x) = φ1(x) + φ2(x), then from Lemma 1 it follows that φ(x) ∈ Ã(1) and
α0(φ) = α0(φ1) + α0(φ2) �= 0.

Using these arguments, we can rewrite the function g(x) as

g(x) = h(x)e−φ(x)

{
h(x) ∈ Ã(ν1+ν2−1+nx −nγ 12−nγ 34)

φ ∈ Ã(1) with α0(φ) > 0.

Let l be in {0, 1, . . . , λ − 1}:

xl−λ+1

(
d

x dx

)l

(xλ−1g(x)) =
l∑

i=0

l−i∑
j=0

(
l

i

)
(nx + λ − 1)!!

(nx + λ − 1 − 2i)!!
xnx +l−2i

×
(

l − i

j

)(
d

x dx

)i( k̂ν1 [R21γ12(s, x)]

[γ12(s, x)]nγ12

)

×
(

d

x dx

)l−i− j( k̂ν2 [R34γ34(t, x)]

[γ34(t, x)]nγ34

)
. (40)

The two last terms on the right-hand side of the above equation are defined for x = 0 and
for all l, i , and j .

The integers λ vary from lmin, which is given by (19) to nx ; thus for all l = 0, 1, . . . , λ − 1,

nx − l > 0 and consequently for all i = 0, 1, . . . , l, the integer nx + l − 2i ≥ 1.
From the above arguments it follows that for all l = 0, . . . , λ − 1,

lim
x→0

xl−λ+1

[(
d

x dx

)l

(xλ−1g(x))

]
jλ−1−l(x) = 0.

All the conditions of Theorem 2 are now shown to be fulfilled by the integrand FJ (x).
The semi-infinite integral J̃ (s, t) can be rewritten as

J̃ (s, t) = 1

vλ+1

∫ +∞

0

[(
d

x dx

)λ(
xnx +λ−1 k̂ν1 [R21γ12(s, x)]

[γ12(s, x)]nγ12

× k̂ν2 [R34γ34(t, x)]

[γ34(t, x)]nγ34

)]
sin(vx) dx (41)
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= 1

vλ+1

+∞∑
n=0

∫ (n+1)π/v

nπ/v

[(
d

x dx

)λ(
xnx +λ′−1 k̂ν1 [R21γ12(s, x)]

[γ12(s, x)]nγ12

× k̂ν2 [R34γ34(t, x)]

[γ34(t, x)]nγ34

)]
sin(vx) dx . (42)

The approximation of J̃ (s, t) is given by

SD̄(2, j)
n = 1

vλ+1

∑n+1
i=0

( n+1
i

)
(1 + i + j)n F(xi+ j )

/[
x2

i+ j G(xi+ j )
]

∑n+1
i=0

( n+1
i

)
(1 + i + j)n

/[
x2

i+ j G(xi+ j )
] , (43)

where xl =(l + 1) π
v

for l = 0, 1, . . . , G(x) = ( d
x dx )λ(xλ−1g(x)) and where F(x) =∫ x

0 G(t) sin(vt) dt .
The function G(x) can be easily computed by using Eq. (7), the Leibnitz formula, and

the fact that d
dx = dz

dx
d
dz .

Let j be in N ; if nγ 12 = 2ν1, then

(
d

x dx

) j[ k̂ν1 [R21γ12(s, x)]

[γ12(s, x)]2ν1

]
= (−1) j s j (1 − s) j k̂ν1+ j [R21γ12(s, x)]

[γ12(s, x)]2(ν1+ j)
. (44)

For nγ 12 < 2ν1, we obtain

(
d

x dx

) j[ k̂ν1 [R21γ12(s, x)]

[γ12(s, x)]nγ12

]

=
j∑

i=0

(
j

i

)
(−1) j−i (2ν1 − nγ12)!!

(2ν1 − nγ12 − 2i)!!
si (1 − s)i k̂ν1+ j−i [R21γ12(s, x)]

[γ12(s, x)]nγ12 +2i . (45)

6. NUMERICAL RESULTS

The finite integrals involved in Eqs. (28) and (43) are transformed into finite sums∫ xn

0 f (x) dx = ∑n−1
l=0

∫ xl+1

xl
f (x) dx and each term of the finite sum is evaluated using the

Gauss–Legendre quadrature of order 16. The finite integrals involved in Eqs. (24) and (42)
are evaluated using the Gauss–Legendre quadrature of order 16. Numerical results are
presented on Tables I–VIII.

TABLE I

Values of J̃ (s, t) Obtained with 15 Correct Decimals Using the Infinite Series (24)

s t ν1 nγ12 λ R1 R2 R3 R4 ζ1 ζ2 max J̃ (s, t)

0.999 0.999 5/2 5 0 2.5 5.0 7.5 6.0 1.5 1.0 182 0.133288836250D+01
0.999 0.005 5/2 3 1 2.5 4.0 5.0 6.5 2.0 1.0 173 0.713647099798D−01
0.005 0.005 7/2 7 1 1.5 1.7 3.7 3.5 2.0 1.0 172 0.536376822348D−02
0.005 0.999 9/2 5 2 1.5 2.0 6.0 3.5 3.0 2.0 157 0.391621109662D+00
0.999 0.999 9/2 9 3 4.0 6.0 6.5 7.5 1.5 2.0 343 0.189344506463D−02
0.999 0.005 11/2 11 3 5.5 6.0 8.5 7.5 5.0 1.0 215 0.142649644276D−02
0.005 0.005 13/2 11 4 3.5 6.5 9.0 5.0 2.5 2.0 70 0.121634061600D−02
0.005 0.005 17/2 17 4 2.0 3.0 7.0 5.0 3.0 2.5 135 0.100732525411D−04

Note. ν2 = ν1, nγ34 = nγ12 , nx = λ, ζ3 = ζ1, and ζ4 = ζ2.
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TABLE II

Values of J̃ (s, t) Obtained with 15 Correct Decimals Using the Infinite Series (42)

s t ν1 nγ12 λ R1 R2 R3 R4 ζ1 ζ2 max J̃ (s, t)

0.999 0.999 5/2 5 0 2.5 5.0 7.5 6.0 1.5 1.0 181 0.133288836250D+01
0.999 0.005 5/2 3 1 2.5 4.0 5.0 6.5 2.0 1.0 192 0.713647099798D−01
0.005 0.005 7/2 7 1 1.5 1.7 3.7 3.5 2.0 1.0 152 0.536376822348D−02
0.005 0.999 9/2 5 2 1.5 2.0 6.0 3.5 3.0 2.0 196 0.391621109662D+00
0.999 0.999 9/2 9 3 4.0 6.0 6.5 7.5 1.5 2.0 272 0.189344506462D−02
0.999 0.005 11/2 11 3 5.5 6.0 8.5 7.5 5.0 1.0 174 0.142649644276D−02
0.005 0.005 13/2 11 4 3.5 6.5 9.0 5.0 2.5 2.0 77 0.121634061600D−02
0.005 0.005 17/2 17 4 2.0 3.0 7.0 5.0 3.0 2.5 127 0.100732525411D−04

Note. ν2 = ν1, nγ34 = nγ12 , nx = λ, ζ3 = ζ1, and ζ4 = ζ2.

TABLE III

Evaluation of J̃ (s, t) Using SD̄(2,5)
n (43)

s t ν1 nγ12 λ R1 R2 R3 R4 ζ1 ζ2 n J̃ (s, t) Error

0.999 0.999 5/2 5 0 2.5 5.0 7.5 6.0 1.5 1.0 4 0.1333D+01 0.53D−10
0.999 0.005 5/2 3 1 2.5 4.0 5.0 6.5 2.0 1.0 6 0.7136D−01 0.62D−10
0.005 0.005 7/2 7 1 1.5 1.7 3.7 3.5 2.0 1.0 7 0.5364D−02 0.19D−10
0.005 0.999 9/2 5 2 1.5 2.0 6.0 3.5 3.0 2.0 9 0.3916D+00 0.64D−10
0.999 0.999 9/2 9 3 4.0 6.0 6.5 7.5 1.5 2.0 5 0.1893D−02 0.19D−10
0.999 0.005 11/2 11 3 5.5 6.0 8.5 7.5 5.0 1.0 7 0.1426D−02 0.51D−10
0.005 0.005 13/2 11 4 3.5 6.5 9.0 5.0 2.5 2.0 6 0.1216D−02 0.44D−10
0.005 0.005 17/2 17 4 2.0 3.0 7.0 5.0 3.0 2.5 5 0.1007D−04 0.13D−12

Note. ν2 = ν1, nγ34 = nγ12 , nx = λ, ζ3 = ζ1, and ζ4 = ζ2.

TABLE IV

Evaluation of J̃ (s, t) Using HD̄(2)
n (28)

s t ν1 nγ12 λ R1 R2 R3 R4 ζ1 ζ2 n J̃ (s, t) Error

0.999 0.999 5/2 5 0 2.5 5.0 7.5 6.0 1.5 1.0 8 0.1333D+01 0.72D−09
0.999 0.005 5/2 3 1 2.5 4.0 5.0 6.5 2.0 1.0 9 0.7136D−01 0.28D−09
0.005 0.005 7/2 7 1 1.5 1.7 3.7 3.5 2.0 1.0 9 0.5364D−02 0.53D−10
0.005 0.999 9/2 5 2 1.5 2.0 6.0 3.5 3.0 2.0 9 0.3916D+00 0.15D−07
0.999 0.999 9/2 9 3 4.0 6.0 6.5 7.5 1.5 2.0 9 0.1893D−02 0.10D−09
0.999 0.005 11/2 11 3 5.5 6.0 8.5 7.5 5.0 1.0 8 0.1426D−02 0.93D−10
0.005 0.005 13/2 11 4 3.5 6.5 9.0 5.0 2.5 2.0 9 0.1216D−02 0.80D−09
0.005 0.005 17/2 17 4 2.0 3.0 7.0 5.0 3.0 2.5 9 0.1007D−04 0.52D−11

Note. ν2 = ν1, nγ34 = nγ12 , nx = λ, ζ3 = ζ1, and ζ4 = ζ2.
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TABLE V

Values of J n200,n400
n100,n300 Obtained with 15 Exact Decimals Using the Infinite Series (24)

n1 n2 nγ12 nx λ R1 R2 R3 R4 ζ1 ζ2 J n200,n400
n100,n300

1 1 5 0 0 1.5 3.5 6.5 4.5 3.0 2.5 0.171288775969805D−01
2 1 7 1 1 3.0 4.5 7.5 5.0 2.0 2.5 0.109643380336422D+00
2 2 9 2 2 2.5 3.5 5.5 4.5 2.0 1.5 0.550614613833544D+01
3 2 11 2 2 2.0 3.5 5.0 4.5 1.0 3.0 0.803372062349496D+01
3 3 13 3 3 1.0 3.0 5.0 4.5 2.0 1.5 0.524493460602543D+00
4 3 15 3 3 2.0 5.0 8.5 6.0 1.5 2.0 0.138426701495125D+00
4 4 17 4 4 4.5 5.0 9.0 6.5 3.5 1.5 0.127171435604003D−02

Note. n3 = n1, n4 = n2, nγ34 = nγ12 , ζ3 = ζ1, and ζ4 = ζ2. �Ri = (Ri , 0, 0) for i = 1, 2, 3, 4.

TABLE VI

Values of J n200,n400
n100,n300 Obtained with 15 Exact Decimals Using the Infinite Series (42)

n1 n2 nγ12 nx λ R1 R2 R3 R4 ζ1 ζ2 J n200,n400
n100,n300

1 1 5 0 0 1.5 3.5 6.5 4.5 3.0 2.5 0.171288775969805D−01
2 1 7 1 1 3.0 4.5 7.5 5.0 2.0 2.5 0.109643380336422D+00
2 2 9 2 2 2.5 3.5 5.5 4.5 2.0 1.5 0.550614613833540D+01
3 2 11 2 2 2.0 3.5 5.0 4.5 1.0 3.0 0.803372062349499D+01
3 3 13 3 3 1.0 3.0 5.0 4.5 2.0 1.5 0.524493460602543D+00
4 3 15 3 3 2.0 5.0 8.5 6.0 1.5 2.0 0.138426701495125D+00
4 4 17 4 4 4.5 5.0 9.0 6.5 3.5 1.5 0.127171435604001D−02

Note. n3 = n1, n4 = n2, nγ34 = nγ12 , ζ3 = ζ1, and ζ4 = ζ2. Ri = (Ri , 0, 0) for i = 1, 2, 3, 4.

TABLE VII

Evaluation of J n200,n400
n100,n300 Using SD̄(2,5)

n (43) for Evaluating the Semi-Infinite Integrals J̃ (s, t)

n1 n2 nγ12 nx λ R1 R2 R3 R4 ζ1 ζ2 n J n200,n400
n100,n300 Error

1 1 5 0 0 1.5 3.5 6.5 4.5 3.0 2.5 4 0.1712D−01 0.69D−13
2 1 7 1 1 3.0 4.5 7.5 5.0 2.0 2.5 5 0.1096D+00 0.46D−11
2 2 9 2 2 2.5 3.5 5.5 4.5 2.0 1.5 6 0.5506D+01 0.12D−12
3 2 11 2 2 2.0 3.5 5.0 4.5 1.0 3.0 4 0.8033D+01 0.92D−12
3 3 13 3 3 1.0 3.0 5.0 4.5 2.0 1.5 4 0.5244D+00 0.29D−11
4 3 15 3 3 2.0 5.0 8.5 6.0 1.5 2.0 3 0.1384D+00 0.78D−11
4 4 17 4 4 4.5 5.0 9.0 6.5 3.5 1.5 3 0.1271D−02 0.55D−14

Note. n3 = n1, n4 = n2, nγ34 = nγ12 , ζ3 = ζ1, and ζ4 = ζ2. �Ri = (Ri , 0, 0) for i = 1, 2, 3, 4.
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TABLE VIII

Evaluation of J n200,n400
n100,n300 Using HD̄(2)

n (28) for Evaluating the Semi-Infinite Integrals J̃ (s, t)

n1 n2 nγ12 nx λ R1 R2 R3 R4 ζ1 ζ2 n J n200,n400
n100,n300 Error

1 1 5 0 0 1.5 3.5 6.5 4.5 3.0 2.5 6 0.1712D−01 0.10D−10
2 1 7 1 1 3.0 4.5 7.5 5.0 2.0 2.5 6 0.1096D+01 0.39D−10
2 2 9 2 2 2.5 3.5 5.5 4.5 2.0 1.5 6 0.5506D+01 0.23D−11
3 2 11 2 2 2.0 3.5 5.0 4.5 1.0 3.0 6 0.8033D+01 0.26D−11
3 3 13 3 3 1.0 3.0 5.0 4.5 2.0 1.5 5 0.5244D+00 0.47D−11
4 3 15 3 3 2.0 5.0 8.5 6.0 1.5 2.0 5 0.1384D+00 0.51D−11
4 4 17 4 4 4.5 5.0 9.0 6.5 3.5 1.5 4 0.1271D−02 0.43D−13

Note. n3 = n1, n4 = n2, nγ34 = nγ12 , ζ3 = ζ1, and ζ4 = ζ2. �Ri = (Ri , 0, 0) for i = 1, 2, 3, 4.

The values with 15 correct decimals are obtained for the integrals by using the infinite
series (24) and (42), which we sum until N = max (see Tables I, II, V, and VI).

The linear set of Eqs. (28) is solved using the LU decomposition method.
The numerical values of the semi-infinite integrals J̃ (s, t), are obtained for s = 0.005

or 0.999 and t = 0.005 or 0.999. Note that in these regions, the oscillations of the integrand
become very rapid.

In the evaluation of J n200,n400
n100,n300 (see Tables V–VIII) we let nx and λ vary to compare the

efficiency of the new method in evaluating semi-infinite integrals whose integrands are very
oscillating.

7. CONCLUSION

The Fourier-transform method allowed analytical expressions to be developed for the
two-electron, four-center Coulomb integrals by choosing the B functions as a basis set of
atomic orbitals. The numerical evaluation of these analytical expressions presents severe
computational difficulties due to the presence of semi-infinite, very oscillatory integrals.

It was shown that these semi-infinite integrals are suitable for application of the nonlinear
D̄-transformation and the H D̄ method.

In the present work, we showed that we can further simplify the application of the above
methods with the help of useful properties of the sine, spherical Bessel, and reduced Bessel
functions.

The use of Cramer’s rule for calculating the approximations SD(2, j)
n of the semi-infinite

integrals is made possible by the fact that the zeros of the sine function are equidistant.
The computation of the successive zeros of the integrands and a method to solve the linear
systems are avoided.

The computation of the function G(x) = ( d
x dx )λ(xλ−1g(x)) does not present any diffi-

culty as can be seen from Eqs. (44) and (45).
The numerical results section shows the unprecedented accuracy obtained using the SD̄

approach to evaluating the two-electron, four-center Coulomb integrals (see Tables IV and
VIII), which are the most difficult type involved in ab initio and density functional theory
molecular structure calculations.
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